ACF Collaborates with NAVY on 3D Braided CMC FastenersACF Collaborates with NAVY on 3D Braided CMC FastenersACF Collaborates with NAVY on 3D Braided CMC FastenersACF Collaborates with NAVY on 3D Braided CMC Fasteners
  • Applicable Markets
  • Technical Reports
  • News and Updates
  • About Us
  • Contact Us
location, MAP, ACF
ACF Relocates to Expanded Facility
October 1, 2020
ACF Awarded 9th Patent for Single-Phase, Fiber-Reinforced Ceramic Matrix Composites
October 6, 2020

ACF Collaborates with NAVY on 3D Braided CMC Fasteners

October 6, 2020
navy, team
ACF Collaborates with NAVY on 3D Braided CMC Fasteners

ACF teams with NAVY on 3D Braided CMC Fasteners

Share
0

Related posts

October 6, 2020

ACF Awarded 9th Patent for Single-Phase, Fiber-Reinforced Ceramic Matrix Composites


Read more
location, MAP, ACF
October 1, 2020

ACF Relocates to Expanded Facility


Read more
john hopkins, space, probe
February 7, 2020

ACF Works with The John Hopkins University Applied Physics Lab on NASA Interstellar Space Probe


Read more

About Our Company

ACF is a producer of ultra-high performance, lower cost "Fi-Bar™", for use in specialty applications and metal and ceramic matrix composites. The unique features and benefits of Fi-Bar™ are derived from our continuous "Direct Conversion Process™".


Categories

  • News
  • Updates

Materials For Extreme
Environments

(208) 522-6008

4323 Commerce Cir Ste A
Idaho Falls, ID 83401

Quicklinks

  • News and Updates
  • Partner on a development project
  • Become a strategic investor
  • Become part of the ACF team
© 2021 Advanced Ceramic Fibers L.L.C All Rights Reserved. Built by Incline Marketing
      Cleantalk Pixel

      Samarium Carbide/Carbon Fiber

      • Rare earth magnetics

      Erbium Carbide/Carbon Fiber

      • Rare earth magnetics

      Gadolinium Carbide/Carbon Fiber

      • Rare earth magnetics

      Praseodymium Carbide/Carbon Fiber

      • rare earth magnetics

      Dysprosium Carbide/Carbon Fiber

      • Rare earth magnetics

      Neodymium Carbide/Carbon Fiber

      • Batteries – electric vehicles

      Yttrium Carbide/Carbon Fiber

      • Superconducting

      Lanthanum Carbide/Carbon Fiber

        • Battery electrodes, cracking catalysis for oil refineries

      Vanadium Carbide/Carbon Fiber

      • Density: VC has a higher density (5.77 gm/cc). VC/C is light-weight 2.5 to 4 gm/cc with carbon core: VC conversion layer is near diamond hardness
      • High-temperature material (2730 C melt)
      • Key feature: VC is wettable by iron and steel in alloys. VC nano used in grain boundary refinement steels.

      Tantalum Carbide/Carbon Fiber

      • Normally very dense (14.3 g/cm3) but lighter with a carbon core
      • High-temperature material (3880 C vaporizes)
      • Near diamond hardness

      Hafnium Carbide

      • HFC layer is near diamond hardness
      • High-temperature material (3900 C melt)
      • Density: VC has a higher density (12.2 gm/cc). TaC/C is light-weight 2.5 to 4 gm/cc with carbon core
      • Key feature: High-temperature stability. Forms mixture with TaC

      Titanium Carbide/Carbon Fiber

      • Wettable by aluminum (possible reinforcing material)
      • Near diamond hardness
      • High temperature (3065 C melt)
      • Low density (4.94 g/cm3)
      • Inexpensive metals source

      Silicon Carbide/Carbon Fiber

      • Low density (3.16 g/cm3)
      • High-temperature material (2830 C vaporizes)
      • Near diamond hardness
      • Can have either conductive or insulative electrical properties